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Synthesis of a- and b-(aminomethyl)vinylphosphonates was achieved from vinyl bromide via a cross-
coupling reaction with triethyl phosphite and by cross-metathesis of allyl bromide and vinylphospho-
nate, respectively. The 1,3-dipolar cycloaddition of these vinylphosphonates with a dipole in the presence
of trifluoroacetic acid afforded selectively the b-aminopyrrolidinephosphonates. Syntheses of cis- and
trans-c-aminopyrrolidinephosphonates are also described.

� 2009 Elsevier Ltd. All rights reserved.
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Figure 1. b- and c-Aminopyrrolidinephosphonates.
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1. Introduction

Vinylphosphonates have been known for several decades1 and
constitute a very important class of building blocks for the synthe-
sis of complex structures,2 including biologically active molecules.3

The b-aminovinylphosphonates, although rarely described,4 have
been used for the synthesis of b-aminophosphonic acid
derivatives5 that display interesting biological properties such as
antibiotics,6 enzyme inhibitors,7and anti-HIV agents.8 However,
synthesis of heterocyclic b-aminophosphonates, in particular
pyrrolidine analogues, remains a challenge.

Syntheses of substituted pyrrolidines are largely reported by
cycloaddition of a 1,3-dipole with vinyl derivatives.9 To the best
of our knowledge, only one 1,3-dipolar cycloaddition reaction has
been reported between a 1,3-dipole and an unsubstituted vinyl-
phosphonate to provide a heterocyclopentylphosphonate.10 On
the contrary, the 1,3-dipolar cycloaddition reaction with substi-
tuted vinylphosphonate is still unknown.

In continuation of our work on the development of new meth-
odology for the synthesis of heterocyclic aminophosphonic acids,11

and considering the importance of heterocyclic aminophospho-
nates in synthetic, agrochemical, and medicinal chemistry,12 we
decided to investigate the 1,3-dipolar cycloaddition of a- and
b-substituted vinylphosphonates with azomethine ylides to access
a range of pyrrolidines, for phosphonopeptide construction (Fig. 1).
ll rights reserved.
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).
In this Letter, we report the synthesis of the first members of a
new class of b- and c-aminophosphoryl pyrrolidines.

2. Results and discussion

Synthesis of b-aminovinylphosphonates 1 was achieved by the
SN2 displacement of the allylic bromide 2 by oxazolidinone or
amide 3 in the presence of a base (Cs2CO3 or NaH). Then, vinyl
bromide 4 was coupled with triethyl phosphite at 150 �C in the
presence of a catalytic amount of nickel bromide.13 The resulting
vinylphosphonates 1 were obtained in good yields (Scheme 1,
Table 1).14
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Scheme 1. Synthesis of b-aminovinylphosphonates: see Table 1.
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Table 1
Formation of vinylphosphonates 1a–c produced via Scheme 1

Entry R-NH-R0 3 4 (Yield %) 1c (Yield %) Vinylphosphonate 1a–c

1

3a 

NHO

O

4a (78)a 1a (74) N
P

O

OEt

OEt
O

O
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a Reaction conditions: NaH, DMF, rt, 12 h.
b Cs2CO3, CH3CN, reflux, 2 h.
c Solvent-free reaction of 4 with P(OEt)3 5 equiv, NiBr2 20 mol %, 150 �C, 1 h.
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Scheme 2. Reagents and conditions: (a) (CH2O)n, TMSCl excess, reflux, 2 h; (b) NaH,
CH2[P(O)(OEt)2]2, THF, 0 �C; (c) NaH, (CH2O)n 5 equiv, THF, rt.

Table 2
Formation of b-aminophosphonates 7a–c produced via Scheme 3

Entry R-NH-R0 1 7 (Yield %) b-Aminophosphonates 7a–c

1 1a 7a (80)

N

P

Bn

O OEt
OEt

N
O

O

2 (±)-1b (±)-7b (99)a
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a Diastereoisomeric excess de = 8%.
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Scheme 4. Synthesis of c-aminovinylphosphonates.
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It is noteworthy that the preparation of 1b from oxazolidinone
(±)-3b by chloromethylation [(CH2O)n/TMSCl] to afford oxazolidi-
none 5, and subsequent alkylation [CH2(P(O)(OEt)2)2] and vinylation
[NaH/(CH2O)n]4d gave only a poor yield of the vinylphosphonate (±)-
1b (Scheme 2).

For this study, the 1,3-dipole derived from 6 (an expensive com-
mercial product) was prepared from benzylamine by following a
well-known procedure.9 With vinylphosphonates 1a–c in hand, we
submitted them to a 1,3-dipolar cycloaddition with amine 6 in the
presence of trifluoroacetic acid (TFA) in toluene at room temperature
(Scheme 3). Under these conditions the desired b-aminophospho-
nates 7a–c were produced in excellent yields (Table 2).15

In order to expand the scope of our method, we decided to pre-
pare the heterocyclic aminophosphonates via the cycloaddition of
dipole derived from 6 with the cis- and trans-c-aminophospho-
nates 9c and 12c, respectively. The preparation of cis-vinylphosph-
onate 9c was achieved by alkylation of N-tosyl amine 6c followed
by phosphorylation to provide aminoalkynephosphonate 8c. Sub-
sequent Lindlar hydrogenation (5 wt % Pd on CaCO3) of the latter
afforded the cis-c-aminophosphonate 9c in good yield.16

trans-Aminovinylphosphonate 12c was prepared selectively by
cross-metathesis of allyl amide 10 and vinylphosphonate 11 using
Grubbs II catalyst (5 mol %)17 in dichloromethane at reflux for 20 h
(Scheme 4).18 Assignment of the stereochemistry of 9c and 12c was
confirmed by the analysis of 3J coupling constants between H-3
and the phosphorus atom. The observed values (3JPHtrans = 51.7 Hz)
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Scheme 3. b-Aminophosphonates by 1,3-dipolar cycloaddition.
for 9c and (3JPHcis = 22.0 Hz) for 12c are in agreement with the
literature.4c,d

The 1,3-dipolar cycloaddition of cis- and trans-amin-
ovinylphosphonates 9c and 12c was achieved under the same con-
ditions as noted above. Amine 6 and aminovinylphosphonates 9c
and 12c were treated with TFA in toluene at room temperature
to produce, with complete stereoselectivity, the heterocyclic c-
aminophosphonates cis-13c and trans-14c in good yields (Scheme
5).19 The relative stereochemistry of cis-13c and trans-14c was
supported by coupling constants in 13C NMR spectra between P
and CH2–C-4. The observed values (3JPCcis = 7.2 Hz) for 13c and
(3JPCtrans = 0 Hz) for 14c were in agreement with our reported data
in a related system.20

Selective deprotection of N,N-dibenzylaminophosphonate 7c by
hydrogenolysis with a catalytic amount of 20% Pd(OH)2/C in AcOH/
HCl under hydrogen (1 atm, 20 h), gave aminophosphonate 15c21

in good yield (Scheme 6).22
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Scheme 5. Synthesis of cis- and trans-c-aminophosphonates.
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Scheme 6. Selective deprotection of amine by hydrogenolysis.
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3. Conclusion

In summary, an easy and efficient synthesis of new b- and
c-aminopyrrolidinephosphonates involving a 1,3-dipolar cycload-
dition of the corresponding vinyl phosphonates with a dipole in
the presence of TFA has been described. Furthermore, new synthetic
routes to vinylphosphonates have been developed via a cross-cou-
pling reaction of vinyl bromide with triethyl phosphite to afford
a-(amino-methyl)vinylphosphonates and via a cross-metathesis to
provide a trans-b-(aminomethyl) analogue, in good yields. Further
studies directed toward the asymmetric synthesis of b- and c-amin-
opyrrolidinephosphonates are currently underway.
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(CH3, Ts), 49.1 (CH2OP), 49.5 (CH2OP), 51.7 (CH2 benzyl), 61.8 (d, 3JPC = 5.5 Hz, C-3),
120.2 (d, 1JPC = 187.2 Hz, C-1), [12 arom C: 127.2 (2CH), 128.1 (CH), 128.5 (2CH),
128.7 (2CH), 130.0 (2CH), 135.3 (Cq), 136.7 (Cq), 143.7 (Cq)], 146.1 (d,
2JPC = 5.2 Hz, C-2).31P NMR (CDCl3, 101.25 MHz) d = 16.52.

19. Data for 13c: 1H NMR (CDCl3, 300 MHz) d = 1.25 (t, J = 7.0 Hz, 3H), 1.27 (t,
J = 7.2 Hz, 3H), 2.13 (dd, J = 9.3, J = 7.2 Hz, 1H, H-5), 2.36–2.65 (m, 3H, H-3, H-2
and H-4), 2.45 (s, 3H, Ts), 2.695 (dd, J = 9.3, 7.2 Hz, 1H, H-5), 2.80–2.94 (m, 1H,
H-2), 3.37 (dd, J = 13.5, 3.0 Hz, 1H, CH2-NTs), 3.40–3.55 (m like AB system, 2H,
Bn-N), 3.62 (dd, J = 13.5, 12.0 Hz, 1H, CH2-NTs), 3.93–4.08 (m, 4H, CH2OP), 4.13
(d, J = 15.0 Hz, 1H, Bn-NTs), 4.32 (d, J = 15.0 Hz, 1H, Bn-NTs), 7.15–7.44 (m,
12H), 7.74 (d, J = 8.4 Hz, 2H). 13C NMR (CDCl3, 90.56 Hz) d = 16.4 (CH3), 16.5
(CH3), 21.5 (CH3, Ts), 36.9 (d, 1JPC = 145.3 Hz, C-3), 38.3 (C-4), 50.5 (d,
3JPC = 7.2 Hz, CH2-NTs), 53.9 (C-2), 54.0 (TsNCH2Ph), 58.5 (d, 3JPC = 5.6 Hz, C-
5), 59.8 (NCH2Ph), 61.5 (d, 2JPC = 6.8 Hz, CH2OP), 61.8 (d, 2JPC = 6.7 Hz, CH2OP),
[18 arom C: 127.0 (CH), 127.4 (2CH), 127.8 (CH), 128.2 (2CH), 128.6 (4CH),
128.7 (2CH), 129.7 (2CH), 136.3 (Cq), 136.7 (Cq), 138.8 (Cq), 143.3 (Cq)]. 31P
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NMR (CDCl3, 121.49 MHz) d = 29.46. Data for 14c: 1H NMR (CDCl3, 250 MHz)
d = 1.24 (t, J = 7.0 Hz, 3H), 1.26 (t, J = 7.0 Hz, 3H), 1.88 (dddd, 2JPH = 16.5 Hz,
J = 8.2, 8.2, 6.2 Hz, 1H, H-3) 2.17–2.66 (m, 4H, 2H-5, H-2 and H-4), 2.44 (s, 3H,
Ts), 2.70–2.95 (m, 1H, H-2), 3.10 (dd, J = 4.8, 13.8 Hz, 1H, CH2-NTs), 3.35 (dd,
J = 10.2, 13.8 Hz, 1H, CH2-NTs), 3.38–3.57 (m like AB system, 2H, Bn-N), 3.90–
4.18 (m, 4H, CH2OP), 4.16 (d, J = 15.2 Hz, 1H, Bn-NTs), 4.51 (d, J = 15.2 Hz, 1H,
Bn-NTs), 7.20–7.50 (m, 12H), 7.74 (d, J = 8.2 Hz, 2H). 13C NMR (CDCl3, 62.9 Hz)
d = 16.5 (CH3), 16.6 (CH3), 21.6 (CH3, Ts), 38.1 (C-4), 38.2 (d, 1JPC = 148.6 Hz, C-
3), 52.8 (TsNCH2), 53.0 (PhCH2-NTs), 53.9 (C-2), 57.4 (d, 3JPC = 5.9 Hz, C-5), 59.4
(NCH2Ph), 61.8 (d, 2JPC = 6.6 Hz, CH2OP), 62.1 (d, 2JPC = 6.6 Hz, CH2OP), [18 arom
C: 127.0 (CH), 127.4 (2CH), 127.8 (CH), 128.3 (2CH), 128.5 (2CH), 128.6 (4CH),
129.8 (2CH), 136.6 (2Cq), 138.8 (Cq), 143.4 (Cq)]. 31P NMR (CDCl3, 101.25 MHz)
d = 30.94.
20. (a) Fadel, A.; Tesson, N. Eur. J. Org. Chem. 2000, 2153–2159; (b) Fadel, A.;
Tesson, N. Tetrahedron: Asymmetry 2000, 11, 2023–2031.

21. Data for 15c: 1H NMR (CDCl3, 360 MHz) d = 1.26 (t, J = 7.0 Hz, 6H), 1.85–2.00
(m, 1H-4), 2.06–2.50 (m, 1H-4), 2.41 (s, 3H, Ts), 3.00–3.18 (m, 5H, 2H-5, 1H-2
and 2H, CH2NTs), 3.82 (dd, JAB = 14.4 Hz, 3JPH = 12.6 Hz, 1H, H-2), 4.00–4.15 (m,
4H, CH2OP), 5.18 (br s, 2H, NH), 7.29 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H).
13C NMR (CDCl3, 90.56 Hz) d = 16.5 (d, 3JPC = 5.4 Hz, 2CH3), 21.6 (CH3, Ts), 31.6
(C-4), 45.5 (d, 1JPC = 147.1 Hz, C-3), 46.7 (C-2), 46.9 (d, 3JPC = 6.9 Hz, C-5), 52.0
(CH2NTs), 62.9 (d, 2JPC = 7.2 Hz, 2CH2OP), [6 arom C: 127.2 (2CH), 129.8 (2CH),
137.1 (Cq), 143.4 (Cq)]. 31P NMR (CDCl3, 101.25 MHz) d = 31.41.

22. For other possible deprotections of amine or hydrolysis of phosphonate
function, see Refs. 11,20.
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